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Abstract--·The mechanical and electric fields in a pIezoelectric material around an elliptical cylinder
cavity and the electric field within the cavity are formulated hy complex potentials. The electric field
inside the cavity is uniform and varies with the shape of the ellipse. When the cavity is reduced to a
slit crack. the electric field strength inside the cavity is inversely proportional to the permittivity of
the cavity. When the ratio of the short semi-axis of the ellipse over the long semi-axis is much
smaller than the ratio of the permittivity of the cavity over that of the material. it can he used as
the electric boundary condition that the electric field strength along the crack faces equals the remote
one. In this case, the energy release rate for crack propagation depends only on the applied stress
and can be represented in terms of the stress intensity factor as in a pure elastic body without
coupling with the electric field. Electric loading may promote or retard crack propagation depending
on whether it increases or decreases the applied stress

I. INTRODlCTION

In 1976, Parton published a fundamental result on the fracture mechanics of piezoelectric
materials. He assumed that a crack was a traction-free but permeable slit, with the electric
potential and the normal component of the electric displacement continuous across the slit.
Since the permittivity of a piezoelectric material may be three orders of magnitude higher
than that of air or vacuum, the electric potential at the upper crack face may be different
from that at the lower face. Therefore, the boundary conditions used there may not appear
to have strong physical support. In 1980, Deeg analysed dislocation, crack and inclusion
problems in piezoelectric solids. To simplify the mathematical evaluation, Deeg proposed
that the normal component of the electric displacement could be treated as zero at the
upper and lower crack faces. In order to prove the validity of Deeg's approximation, Pak
(1990) gave a detailed argument for neglecting the electric displacement within the crack.
This boundary condition may be called the D-P condition. Currently, the D-P condition
predominates in studying the fracture mechanics of piezoelectric materials. Using the D-P
condition, Pak (1990) studied a crack with its front coincident with the poling axis. Sosa
and Pak (1990) investigated a more general crack tip field using an eigenfunction analysis.
Shindo et al. (1990) analysed cracks in piezoelectric layers using integral equation methods.
Kuo and Barnett (1991) carried out an asymptotic crack tip analysis. Pak (1992) and Suo
et al. (1992) reanalysed the stress and electric fields near a finite crack. The D-P boundary
condition leads to singularities of the electric displacement and the electric field strength at
crack tips. Two assumptions are involved in the D-P boundary condition, namely: (I) no
free charge resides on either crack face: and (2) the electric displacement within the crack
is negligible.

In 1989 McMeeking calculated electrostrictive stresses near a crack tip. His results
show that if the aspect ratio of a flaw thickness to length is an order of magnitude larger
than the dielectric permittivity of the interior of the flaw divided by the dielectric permittivity
of the surrounding materiaL then a model using an electrically impermeable flaw is appro­
priate. As the flaw ratio diminishes, the effective mechanical stress intensity factor
approaches zero (McMeeking, 1989). Pak and Tobin (1993) studied crack face boundary
conditions for piezoelectric materials. They found that the ratio of the crack tip electric
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field to the applied field approaches unity as an elliptical cavity reduces to a slit crack, and
the crack tip electric field had multiple values for different limiting processes.

The electric boundary conditions along an interface should be the continuity of the
normal component of the electric displacement and the continuity of the tangent component
of the electric field strength (Jackson, 1976). Using such boundary conditions, Zhang and
Hack (1992) have analysed the fracture of a mode III crack. However, the electric field
within a slit crack could not be studied by Zhang and Hack (1992), because the volume of
the slit crack is treated as zero. Recently, Zhang (1994a) investigated the effect of sample
width on the energy release rate for crack propagation. The results show that the energy
release rate varies with the aspect ratio of the sample width to the crack width, because
both electric field strength and electric energy change with the crack width.

To establish a fundamentally sound solution for a slit-like crack, we consider an
elliptical hole in the present work. When the short semi-axis of the ellipse approaches zero,
we obtain the solution for a sharp crack. From the limiting process we can study the effects
of different sized gaps between the crack faces and varying permittivity within the crack.
When the crack front coincides with the poling axis, the in-plane deformation is decoupled
from the anti-plane deformation and the in-plane electric field. Therefore, we study an
elliptical cavity under anti-plane mechanical loading and in-plane electric loading in the
present work, because the anti-plane deformation is always coupled with the electric field.

Barnett and Lothe (1975), Suo et al. (1992), Sosa and Pak (1990), Pak (1992) and
Park (1994) formulated the general solution to the mechanical and electric coupling prob­
lems. Sosa (1993) reviewed the crack problems in piezoelectric ceramics. Dunn (1994)
investigated the effects of crack face boundary conditions on the fracture mechanics of
piezoelectric solids. More recently, Zhang (1994b) proposed a test to measure the isothermal
i-integral by using multiple samples with identical geometry but different crack length. His
results indicate that the isothermal virtual work equals the virtual change of the full Gibbs
function (Zhang, 1994b). The i-integral for piezoelectric materials can be derived from the
displacement-force and charge-voltage curves which are recorded during testing (Zhang,
1994b). Using the full Gibbs function, Zhang and Tong (1995) solved the fracture problems
in piezoelectric materials. The results show that the energy release rate is positively definite,
which is consistent with the present work. The present study emphasizes mode III cracks
and our new work (Zhang and Tong, 1995) will report results for general cases.

2. ANTI-PLA!\IE STRAIN EQUATIONS

The three-dimensional formulation of linear piezoelectricity is briefly summarized
here. Following Parton and Kudryavtsev (1988), the governing field equations at constant
temperature are given by :

D i.i = o. (I)

with boundary conditions along an interface between a gas (or vacuum) phase and a
piezoelectric solid:

and constitutive equations:

(1'n = T,
(Dill - DC) . n = - q,

(Elll-EC)xn=O. (2)

(3)
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Fig. I. (a) Remote mechanical and electric loads in the: planc. (b) Mapping the elliptical cavity
mto a unit circle m the ~ plane.

where the superscripts m and c refer to '"in material" and "in air or vacuum", respectively,
Gil and 5,! are the stress and strain tensors, respectively, ('Uk! are the elastic moduli measured
at a constant electric field, eu are the dielectric constants measured at constant strain, eikl

are the piezoelectric constants, Ek and Dk are the electric field strength and the electric
displacement vectors, respectively, q is the density of free charge on the surface between
the two media, T is traction along the boundary and n is the unit vector normal to the
boundary.

The piezoelectric effect is found only in crystals which do not possess a centre of
symmetry. For the purposes of illustration and comparison with previous works (Pak,
1990; Zhang and Hack, 1992), we will consider a transversely isotropic material belonging
to the hexagonal crystal class 6mm. In contracted notation, the governing equations for the
anti-plane strain problem (only out-of-plane displacements and in-plane electric fields) in
such a material containing an elliptical hole (xfa e+ x~!he = I), as shown in Fig. I (a),
reduce to:

(4)

where Y'e is the two-dimensional Laplacian operator, u, is the displacement In the X3

direction and ¢ is the static electrical potential. We define:

?u) IU,
1~ j I I',' = -

(c'Y1 tXl

EI

tIP
Ee

?¢
(5)

?x I tXe

where )"1 = 25,1 and I"e = 2s)e' Let u) and ¢ be the imaginary parts of the analytic complex
functions U and <1>, such that:

U) =1[[(.::)].

¢ = .1[<1>(.::)]. (6)

where.:: = XI +ixe. Then. the governing equations are automatically satisfied. Defining the
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complex strain, 1', the complex electric field strength, E, the complex stress, (1, and the
complex electric displacement, D, as :

I' = I'n+ iI'3\' E = E2 +iE\,

(1 = (132 +i(13J, D = D 2 +iDJ,

we can represent the constitutive equations as:

(1 = ('44 U'(z) +e\s<l>'(z),

D = c\sU'(z)-G\\<l>'(z),

where prime denotes differentiation with respect to z.
The boundary conditions along the surface of the elliptical hole have the form:

(1.1 = 0 (traction-free),

D~ = D~ (surface charge-free),

ET = Ef (irrotationality ofelectric fields),

(7)

(8)

(9)

where the subscripts ...l.. and II mean, respectively, perpendicular and parallel to the surface.
Consider the conformal mapping function

where

a+b a-b
R = -2- andm = a+b' (10)

which maps the ellipse in the z plane into a unit circle in the' plane, and the line segment
( - c, c) in the z plane into a circle with a radius of Fz in the' plane, as shown in Fig.
I (b), where c2 = a2

- b2
. The inverse mapping function of eqn (10) is

(11)

The problem in the z plane can be solved by mapping the elliptical hole into the circular
ring in the' plane. To ensure that the electric field is single valued along the line segment,
the complex potential tI>c must satisfy the following condition

(12)

where eis the polar angle.
The three complex potentials in the' plane can be expressed in the forms

(13)
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In general, A], A 2 , B], Bc, C and C2 are complex constants. Since remote electric and
mechanical fields are applied only along the X2 direction in the present study, the six
constants can be treated as real. Consequently, the boundary conditions of eqn (9) may be
represented in terms of the complex potentials

.![(C44 U'+c],(<D Ill
)') e'O] = 0 (traction-free),

.f[(C]5 U' -(;';'] (<DnT) e'O] = ./[ -E~] (<DTe'O] (surface charge-free),

.Jf[(<DIll)'e'O] = J!:'[(<DTe'O] (irrotationalityofelectricfields). (14)

From eqns (12) and (14), we find four relations among these constants.

As a result, the constants A c' Bc' C and C2 can be expressed in terms of A] and B]

2m(d5 +C44E~]) I-a.

C2 =(I~-'nD(~~~-+-c::£~J+ (1 +m)c44f.~] B] =-;;+{3 B],

where a. and f3 are dimensionless constants given by

(16)

h
a. =-.

a

and

(r

Ge = £';'] + ]'
C-l4

(17)

is an effective dielectric constant of the material, which was first introduced by Zhang and
Hack (1992). The constants A] and B] can be further determined by the remote loading
conditions. As studied in previous works (Pak, 1990; Zhang and Hack, 1992), there are
four cases of combined electric and mechanical loadings. These are:

(1) a remote mechanical stress component, tTL'" and a remote electric displacement,
D 2.%, along the x 2 axis;

(2) a remote mechanical strain component, ;' 12 fO and a remote electric field strength,
E2..%, along the X2 axis;

(3) a remote mechanical stress component, O"J2.f' and a remote electric field strength,
E1..xo along the X2 axis; and

(4) a remote mechanical strain component, ;'12" and a remote electric displacement,
Db:.., along the X2 axis.

The four loading cases are illustrated in Figs I(a, b). For case I, eqn (8) may be
expressed as
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I, D [" 01 (moo)' D
:;~~ = fl';; / -£11 'I! = ::!,x· (18)

Substituting egn (13) into egn (18), we have

Solving egn (19) results in the two constants A I and B I

el_... (J.~~. t. -C44 D 2.f.

d,+CH['!' 1

(19)

(20)

where /le and ee are the effective shear modulus and effective piezoelectric constant, respec­
tively, which are given by

Analogous to case I, the two constants A I and B I for the remaining three cases are
determined and expressed as :

for case 2.

"

Ill

'II

-ElJ forcase4. (22)

For each of the four loading cases, A I and B I denote the remote strain and electric fields,
respectively.

The complex potentials in the::: plane result from the corresponding ones in the (plane
by multiplying by R, They are given by

From the inverse conformal mapping function, egn (II), we have

d( l_:::_±y(:::c-=-cc~

d::: 2R )(:::c ~cC)

Differentiating the three complex potentials leads to the strain and electric fields

(23)

(24)
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y = U'(z) = [A j [Z:r~_(z2 __~2)] - ~~A2 ,J __._.'_~~ , '
2 z+.j(z"-c-) 'y'(z--c)

_ Em = (l1>m)'(z) = [~~:r_~(Z2 _(,2)] ~ _lR 2!3_L_J_ ~I~_
2 Z+'\/'(Z2_(,2) J(Z2_ C2)'

349

- EC = (<1>c)'(z) = C j • (25)

It can be seen in eqn (25) that the electric field inside the hole is uniform and varies with
m. Now it is straightforward to derive the stress field and the electric displacements by
using the constitutive equations, i.e. eqns (8).

3. ELECTRIC FIELD INSIDE THE ELLIPTICAL CAVITY

The electric field strength within the elliptical hole equals the constant C j but with an
opposite sign, which can be rewritten as

(26)

Equation (26) shows that the electric field strength inside the cavity is uniform and has a
finite value. Suppose that the permittivity inside the hole is much smaller than that of the
material. In this case, {3 approaches zero, then eqn (26) reduces to

(27)

In this limit, the electric field strength inside the hole is very sensitive to 0(. The electric field
strength approaches infinity when 0( -+ O. If.O( -+ 0 first, eqn (26) approximates to

Ec = I:;c. E
"'_I·

E~ j -

(28)

It is indicated in eqn (28) that the electric field strength inside the hole is inversely pro­
portional to the permittivity of the hole in this case. If the permittivity of the hole approaches
zero, then the electric field strength will become infinite.

The electric displacement within the hole is the product of the electric field strength
times the permittivity of the hole. From eqn (26), we have

(29)

As can be seen in eqn (29), the electric displacement inside the cavity is also uniform. There
are three limits when ex approaches zero. They are:

EeE, ,
Dc = cc: forO( -+ 0 and O(if3 -+ constant,

7./{3 + I

DC -+ 0 for.O( -+ 0 and 0(/ /3 -+ x. (30)

Equation (30) indicates that the electric displacement may approach zero only when the
ratio of 0(/{3 approaches infinity. For the other two limits the electric displacement is larger
than zero.



350 T.- Y Zhang and P. Tong

As described above, both the electric field strength and the electric displacement inside
the cavity are uniform and have only one component parallel to the X 2 axis. When the
cavity reduces to a slit crack, its volume approaches zero. The electric energy density inside
the hole may approach infinity if the electric field strength approaches infinity. In this case,
the electric energy of the cavity is not trivial, which will have a great influence on the energy
release rate for crack propagation.

4. ELECTRIC FIELD ALONG THE ELLIPTICAL CAVITY SURFACE

The electric field strength within a piezoelectric material is given in eqn (24). Sub­
stituting B2 into eqn (25), we have

(31)

Along the elliptical surface, Z = a cos () + ib sin e, and then the electric field strength may be
expressed in terms of the parameter ()

(32)

As expected, Em = E' for e= 0 and () = n. When CI. approaches zero, eqn (32) is reduced to

(33)

Equation (33) shows that the electric field strength is uniform along the crack surfaces and
equals the remote applied electric field strength. This phenomenon was found before by
Pak and Tobin (1993). This result may be used as a boundary condition to solve fracture
problems for long slit cracks.

When f3 approaches zero first. then eqn (32) is reduced to

m E2 ,(1+CI.)cos()E = ----.-----... -- .
x cos () + i sin ()

Then, letting x approach zero reduces eqn (34) further to

Em = -iE20 cote.

(34)

(35)

As can be seen in eqns (33) and (35), the two approachings result in two different solutions.
Equation (35) shows that the electric field strength has a singularity when e= 0 and the
electric field strength only has a component along the XI direction, which contrasts to that
directly derived from eqn (32). If {l is treated as zero first and then CI. approaches zero, the
electric field strengths along the elliptical surface have, respectively, an infinite value of
component £2 when the surfaces are approached from the inside of the hole, as shown in
eqn (26), and variable values of component E I when the surfaces are approached from the
outside, as shown in eqn (35).

The electric displacement in the material is calculated by using eqns (8) and (25). It
turns out as
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Along the hole surface. the electric displacement has the following form:

(37)

When & = ± 7L2. as expected. 1)'" = 0'. When () = () or (} = n. the electric displacement has
only a real component as

(38)

which is approximately inversely proportional to "1._ When "1. approaches zero first, eqn (37)
is reduced to

(39)

As can be seen in eqn (39). the electric displacement is independent of the permittivity of
the hole. The real part of the electric displacement has the same value as that inside the
hole, which satisfies the charge-free boundary condition. However, the piezoelectric prop­
erty induces an electric displacement in the x I direction. which has singularities when e= 0
and n. It should be pointed out that the electric displacement has only singularities in the
D 2 component if () = 0 or () = n first and then Ct. approaches zero, as shown by eqn (38). If
a approaches zero first the electric displacement will have singularities in the D I component
at crack tips. The inconsistency is caused by the fact that the two apexes of the ellipse
become crack tips when a approaches zero. An analytic function has different limits when
it approaches a crack tip along different paths. Furthermore. if the permittivity of the hole
is treated as zero first. eqn (37) can be simplified to

1+1.
D"' = ., [I'I <-'" + E,,] cost}.

x cos Ii + I sm Ii .

Then, if-x approaches zero. eqn (40) is further reduced to

(40)

(41)

In this case. the electric displacement has no component along the X 2 axis, when the
hole surface is approached from the outside. However. eqn (29) shows that the electric
displacement inside the hole has only one component in the X2 direction for any non-zero
values of a and f3. The electric displacement approaches zero only when the ratio of a/f3
approaches infinity. An assumption of a zero electric displacement along the crack faces
would lead to a zero electric displacement inside the cavity and then a zero electric field
strength, which is in contrast to the fact that the electric field strength inside the cavity is
uniform and approaches infinity when both x and If approach zero.
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ENERGY AND ENERGY RELEASE RATE

In order to calculate the energy release rate for crack propagation, energies of the
system are first studied. There are two sorts of energies, mechanical and electric, in the
system. In both the piezoelectric material and the vacuum elliptic cavity exist electric fields
which contribute to the electric energy and then the energy release rate. The two energies
of the system per thickness are given by

(42)

where Vela and V ele denote the mechanical and electric energies, respectively, and where the
integration covers the total area, L including both the material and the hole. Application
of the divergence theorem to Vcla and Vele yields

(43)

where the integration contour of a circle, centred at the origin, of radius p encloses the
entire system. Sih and Liebowitz (1968) calculated the elastic energy in a solid containing
an elliptical hole under anti-plane loading. Following their treatments, the two energy
functions can be expressed in terms of the complex potentials

Vela = ~~. [V(Z)-V(Z)][C44V'(Z)+CI5(<DIn)'(Z)- :: (C44 V'(Z) +el 5(<DIn)'(Z))] dz,

Vele = ~ i fL [<DIn (z) - <DIn (Z)J[CIS U' (Z) - 87\ (<DIn)'(z) - :: (CIS V'(z) - 87\ (<DIn)'(Z))] dz.

(44)

Equation (44) shows that the mechanical and electric energies are determined just by the
two complex potentials defined in the material domain. In order to calculate the energy
change induced by the elliptical hole, the complex potentials have to be readjusted

( B') B'<DIn(z) = B I - --!- Z + -}-,
P" L-

(45)

so that the mechanical and electric tractions on the large contour L are in equilibrium with
the imposed mechanical and electric loadings at infinity. Comparing eqn (45) with (23), we
find relations between these constants with and without a prime:

(46)

Using eqn (45) and (46) and completing the two integrations of eqn (44) lead to

Substituting eqn (46) into eqn (47) results in
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na(a+.h)(Jl', I... , _(a+b){3e ls E 2. x ]

+ :2 l"··f (h+af3)C44 '
(48)

As can be seen in eqn (4S). there are two terms in each of the two energies. The first terms
represent the energies, mechanical and electric, that the piezoelectric cylinder would possess
with no cavity present, and the second terms are the majority of energies due to the presence
of the cavity. As an important consequence, the total energy due to the elliptical hole is
given by

(49)

The energy release rate for crack propagation is defined as the differentiation of the
crack induced energy with respect to the crack length. Assuming h remains unchanged
during cavity growth, we define the energy release rate, Gh, for the cavity growth as:

If the piezoelectric constant. ('I)' is zero, eqns (49) and (50) are, respectively, reduced
to

(51 )

(52)

In this case, the mechanical and electric energies are decoupled, as shown in eqn (51). The
two energies correspond respectively to the mechanical and electric loadings, and the electric
energy is proportional to the area of the elliptical hole. Equation (52) indicates that the
energy release rate for mechanical loading is always positive and is also positive for electric
loading, as long as permittivity of the material is larger than that of the cavity.

When h approaches zero, eqns (49) and (50), respectively, will approach

(53)

(54)

In this sense, both the energy and the energy release rate are independent of the permittivity
of the hole. Recall
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(55)

for all four loading cases. Substituting eqn (55) into eqn (53) and (54) yields

(56)

Equation (56) shows that both the energy and the energy release rate are positive. The
energy release rate is determined only by the applied stress. This phenomenon was found
in our previous work (Zhang and Hack, 1992), except for replacing the effective shear
modulus by the elastic constant ('44' For the four loading cases studied, the energy release
rates have the following forms:

Cease I

(57)

It is the effective stress that drives crack propagation (Zhang and Hack, 1992). The electric
loadings playa role only under constant strain loading. Under constant stress loading, the
energy release rates are independent of the electric field, because the electric energy due to
the cavity becomes zero as the cavity reduces to a slit crack. All these aspects were discussed
in detail in our previous paper (Zhang and Hack, 1992).

If the permittivity inside the hole is initially treated as zero, eqns (49) and (50) are
reduced to

rra(a+b)
U ---- [a ." + E D 1t - 2 :'2. J: {3.2.x 2,x 2.x, (58)

It seems that the mechanical and electric fields decouple in this case, as shown in eqn (58).
When b approaches zero, the mechanical and electric energies due to the crack have the
values of that stored in a circle of radius a. The energy release rates for the four loading
cases are given by

G - ~ (. ,,2 m E 2 )
case2- 2 (44lJ1,J+ E ll 2.x·,

(59)
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Equation (59) shows that the electric loadings have a great influence on the energy release
rates for both remote stress and strain loadings. For all four loading cases, the energy
release rate is always positive.

6. MECHAI\ICAL AND ELECTRIC FIELDS "'EAR THE CAVITY IN THE MATERIAL

The mechanical and electric fields are delermined by the complex potentials which are
given by eqn (13). Both electric field strength and electric displacement inside the cavity are
uniform, as described in Section 3. In this section, we analyse the mechanical and electric
fields in the material. For simplicity, the superscript m for the electric properties is ignored
here. When the origin of Ihe system is moved to the right apex of the ellipse, the electric
and mechanical fields are presented in variable. ::' = :: - a, as

Y= [iJ::'+1l+'v(::"+111::'+h')] _ 1R'A, -J------I---
1 ~'+a+'v(~"+111::'+h2) y!(::'2+2a::'+h2) ,

E= _[~[::ia-rv(::"+111::+h')]_ 1R'B, .. J 1
1 ::'+1l-+-,(::"+1a::'+h') y!(::"+211Z'+b2) ,

(J = CH','-i'I,E. 0 = ('I,/+C;';'IE. (60)

If z' is real, all four funclions are real too. as indicated in eqn (60). In this case, as z'

approaches zero along the X'I axis. the values of the four functions are

l+:x
E = _ pE,."

:x+p
(61)

Equation (61) shows that the strain will approach infinity when :x approaches zero and f3
has a finite value. A singular strain causes singularities in stress and electric displacement
via Hooke's law and the piezoelectricity, respectively. However. as long as the permittivity
of the hole has a non-zero val ue. the electric field strength is finite no matter how small !J.

is. Let b in eqn (60) approach zero first. Then. the mechanical and electric fields in the
material have the following form:

(62)

Consequently, the strain, stress, electric field strength and electric displacement intensity
factors may be defined as

(63)

The relationships between the various intensity factors arise from eqn (62) so that

(64)

Combiningeqn (62) with eqn (63) results in
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Ka -, '( ) [" e I 5 l- I)III - (44..) ITa i 32.Y - -.-E2'y - (J32.x'V (ITa,
( 44

(65)

The near crack tip strain, stress and electric displacement may be expressed in terms of the
strain, stress and electric displacement factors as

K711 () K711 ()
(132 = "--cos), (13 I = ----sm-

J (2ITr) - J (2ITr) 2 '

Kill () Kill ()
V'2 = -,--cos" V3 I = --.--sm-

..) (2ITr) "- J(2ITr) 2'

K!;I e KRI ()
(66)D, = ---- cos- DI = ----sm-.

- J (2ITr) 2 ' J(2ITr) 2

It should be noted that while eqn (66) expresses the fields around the right crack tip,
they obscure the physical parameters which induce those fields. Also, eqn (66) is a good
approximation only if the following inequalities

r«a for V,

and
elsE

forI' « a )'» -- (1,

C44

and
8'~IE

for D, (67)r«a y » _._--_.
e ls

are valid. Consequently, the energy release rate, eqn (56), can be represented in terms of
the stress intensity factor

G _ (K711)2
III - 2C44 .

(68)

When the permittivity of the hole is treated as zero first, then A 2 = - A I and B 2 = - B j •

In this case, h approaching zero reduces eqn (60) to

B I
[ " a

2 l IE = - - [z' +a+ I(z'- +2a:')] + .'
2 " z' +a+J(z'2 +2az') J(z'2 +2az')

(69)

Then, the various intensity factors are derived from eqns (69) and (63). They are given by



Fracture mechanics for a mode III crack 357

(70)

Equation (70) shows that the electric field strength factor is no longer zero. The relationships
between the intensity factors are exactly the same as these between the properties. Fur­
thermore, the energy release rate, eqn (58), is re-expressed in terms of the intensity factors
as

(71 )

It should be pointed out that eqn (71) differs from that in some previous works (Pak, 1990;
Suo et al., 1992). In the present work, the energy release rate is a sum of the mechanical
intensity factor product plus the electric intensity factor product; but in the previous works,
G equals the mechanical intensity factor product minus the electric intensity factor product
(Pak, 1990; Suo et al., 1992). The reason for the inconsistency is that in the previous works
(Pak, 1990; Suo et al.. 1992), an electric enthalpy, which is not positively definite, was used
to calculated the energy release rate.

7. DISCCSSION

The material properties of piezoelectric ceramics (e.g. lead zirconate titanate) are given
below (Pak, 1990) :

10 ,v
c44=3.53xI0 ----:;,

m-

I ,Ill lSI 10 10 C
-II = X V;'

(72)

where N is the force in newtons, C is the charge in coulombs, V is the electric potential in
volts and m is the length in metres. The permittivity of free space is also given in eqn (72).
From these data, the effective dielectric constant, the effective shear modulus, the effective
piezoelectric constant and the dimensionless constant f3 are evaluated.

8e = 233 x 10 10 C
Vm'

_ 10 N
lie = ).44 x I0 - ~

m'

C
Ce = 48.4 m 2 ' /3 = 3.8 X 10- 4

. (73)

Consider the electric displacement inside the cavity again, when the cavity is reduced
to a crack. Assume that the width of a slit crack is on the order of nanometre, i.e. b = 10- 9

m. If the crack length is on the order of micrometre, i.e. a = 10- 6 m, then the dimensionless
parameter x = 10-) is much smaller than one. The ratio of!J. over /3 equals 2.63, which is
comparable with one. In this sense, the electric displacement is given by the second limit in
eqn (30). To ensure approximately the third limit in eqn (30), x -+ 0 and xl/3 -+ 00, al/3 must
be larger than 100 and x must be smaller than O.Ol.xl/3 = 100 yields a = 0.04 which is
obviously larger than 0.01. This result indicates that the condition for the third limit in eqn
(30) cannot be satisfied. When x is smaller than 10- 6

, then x//3 = 2.6 x 10- 3 can be treated
as zero. This requires a = 1 mm for a nanometre-wide crack.

The energy release rate. i.e. eqn (50), can be re-expressed as
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G,., = J[4(/1.(~+:x)1(j.,_, .. ("1"
'

_' ~ (1+:X)eICEcc.,-')· +E,IDo,,(~)JL L' (1+:xf)k44 ~ .. ". 1+/3/':1.

(74)

When hoth 'Y and {i are much smaller than one, eqn (74) is reduced to

(75)

Only when 'Y {i is much smaller than one can eqn (75) be reduced further to eqn (54). Since
the condition that 'Y {i is much larger than one may not be satisfied for a slit crack, as
discussed ahove. the energy release rate given in eqn (59) may not hold for real materials.

X SUMMARY

Thc mechanical and electric tields in a piezoelectric material containing an elliptical
cylinder hole under anti-plane mechanical loading and in-plane electric loading were for­
mulated hy complex variables. The total energy induced by the elliptical cavity was evalu­
ated and the energy release rate was analysed. The solution to a mode III piezoelectric
fracture prohlem was obtained by letting the short semi-axis of the ellipse approach zero.
The results show that if the ratio of the short semi-axis over the length semi-axis, ct., is much
smaller than the ratio of the permittivity of the cavity over the effective dielectric constant
of the material. Ii. then:

( I) the electric boundary condition along the crack faces may be given as the electric
tield strength equals the remote applied one. as shown in eqn (33);

(~) strain. stress and electric displacement intensity factors can be introduced to
measure the strengths of the corresponding singularities at the crack tips, but the electric
tield strength does not produce any singularity: and

(3) the energy release rate is always positive and has the same form as given in our
previous work (Zhang and Hack. 1992) except for replacing the effective shear modulus by
the elastic constant. C.j.j.
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